1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
//! The Memory-Mapped Registers module. //! //! **NOTE** A Drone platform crate may re-export this module with its own //! additions under the same name, in which case it should be used instead. //! //! A memory-mapped register is a special location in memory. Reads and writes //! from/to this location produce side-effects. For example writing `1` or `0` //! to such location may set the related GPIO output pin to the high or low //! logical level. In the same way reading from such location may return `1` or //! `0` depending on the input level of the related GPIO input pin. The most //! basic way to deal with this memory is to use [`core::ptr::read_volatile`] //! and [`core::ptr::write_volatile`]. Here is an example: //! //! ```no_run //! use core::ptr::{read_volatile, write_volatile}; //! //! // The address of GPIOA_CRL register. //! const GPIOA_CRL: usize = 0x4001_0800; //! // The offset for MODE2 field of GPIOA_CRL register. //! const GPIOA_CRL_MODE2_OFFSET: usize = 8; //! // The mask for MODE2 field of GPIOA_CRL register. //! const GPIOA_CRL_MODE2_MASK: u32 = 0x0000_0300; //! //! // Read the state of GPIOA_CRL register. The function is unsafe because it //! // can read from any location in memory. //! let mut gpioa_crl = unsafe { read_volatile(GPIOA_CRL as *const u32) }; //! // Do bit arithmetic to get the value of MODE2 field. //! let mut gpioa_crl_mode2 = (gpioa_crl & GPIOA_CRL_MODE2_MASK) >> GPIOA_CRL_MODE2_OFFSET; //! // Toggle some bits. //! gpioa_crl_mode2 ^= 0b10; //! // Do bit arithmetic to update the register value with the new field value. //! gpioa_crl = gpioa_crl & !GPIOA_CRL_MODE2_MASK | gpioa_crl_mode2 << GPIOA_CRL_MODE2_OFFSET; //! // Update the state of GPIOA_CRL register. The function is also unsafe //! // because it can write to any location in memory. //! unsafe { write_volatile(GPIOA_CRL as *mut u32, gpioa_crl) }; //! ``` //! //! This way has numerous disadvantages: it's obscure, verbose, error-prone, //! and requires `unsafe` blocks. Also it has less obvious problems like lack of //! thread-safety. This module provides safe and zero-cost abstractions to //! this problem. As result the above example can be written like this: //! //! ```no_run //! # use drone_core::{reg::prelude::*, token::Token}; //! # drone_core::reg! { //! # mod GPIOA CRL; 0x4001_0800 0x20 0 RReg WReg; //! # MODE2 { 8 2 RRRegField WWRegField } //! # } //! # fn main() { //! # let mut gpioa_crl = unsafe { gpioa_crl::Reg::<Urt>::take() }; //! gpioa_crl.modify(|r| r.write_mode2(r.mode2() ^ 0b10)); //! # } //! ``` //! //! We abstract this type of memory with zero-sized [`token`]s. (Familiarity //! with [`token`] module is required.) Only the code that have the token //! instance for a particular memory-mapped register can manipulate it safely. //! At the very base there is *Register Field Token* (like `MODE2` in the above //! example.) Register Field Tokens for a particular register grouped in //! *Register Token* (like `GPIO_CRL` in the above example.) And all available //! Register Tokens are grouped in one *Register Tokens Index*. //! //! # API //! //! The memory-mapped registers API is scattered across numerous traits. //! Therefore it is recommended to use [`reg::prelude`]: //! //! ``` //! # #![allow(unused_imports)] //! use drone_core::reg::prelude::*; //! ``` //! //! ## Field Token //! //! | | Field Width | Field Mode | Register Mode | //! |----------------------------------------------------------|-----------|-------|------------| //! | [`into_unsync`](reg::field::RegField::into_unsync) | | | | //! | [`into_sync`](reg::field::RegField::into_sync) | | | | //! | [`into_copy`](reg::field::RegField::into_copy) | | | | //! | [`as_sync`](reg::field::RegField::as_sync) | | | | //! | [`load_val`](reg::field::RRRegField::load_val) | | read | read | //! | [`default_val`](reg::field::WoWoRegField::default_val) | | write | write-only | //! | [`store_val`](reg::field::WoWoRegField::store_val) | | write | write-only | //! | [`store`](reg::field::WoWoRegField::store) | | write | write-only | //! | [`read`](reg::field::RRRegFieldBit::read) | one-bit | read | read | //! | [`read_bit`](reg::field::RRRegFieldBit::read_bit) | one-bit | read | read | //! | [`set`](reg::field::WWRegFieldBit::set) | one-bit | write | write | //! | [`clear`](reg::field::WWRegFieldBit::clear) | one-bit | write | write | //! | [`toggle`](reg::field::WWRegFieldBit::toggle) | one-bit | write | write | //! | [`set_bit`](reg::field::WoWoRegFieldBit::set_bit) | one-bit | write | write-only | //! | [`clear_bit`](reg::field::WoWoRegFieldBit::clear_bit) | one-bit | write | write-only | //! | [`toggle_bit`](reg::field::WoWoRegFieldBit::toggle_bit) | one-bit | write | write-only | //! | [`read`](reg::field::RRRegFieldBits::read) | multi-bit | read | read | //! | [`read_bits`](reg::field::RRRegFieldBits::read_bits) | multi-bit | read | read | //! | [`write`](reg::field::WWRegFieldBits::write) | multi-bit | write | write | //! | [`write_bits`](reg::field::WoWoRegFieldBits::write_bits) | multi-bit | write | write-only | //! //! ## Register Token //! //! | | Mode | Tag | //! |-------------------------------------------|------------|----------| //! | [`into_unsync`](reg::Reg::into_unsync) | | | //! | [`into_sync`](reg::Reg::into_sync) | | | //! | [`into_copy`](reg::Reg::into_copy) | | | //! | [`as_sync`](reg::Reg::as_sync) | | | //! | [`default_val`](reg::Reg::default_val) | | | //! | [`default`](reg::RegRef::default) | | | //! | [`hold`](reg::RegRef::hold) | | | //! | [`load_val`](reg::RReg::load_val) | read | | //! | [`load`](reg::RReg::load) | read | | //! | [`as_ptr`](reg::RReg::as_ptr) | read | | //! | [`as_mut_ptr`](reg::WReg::as_mut_ptr) | write | | //! | [`store`](reg::WRegUnsync::store) | write | Urt | //! | [`store`](reg::WRegAtomic::store) | write | Srt, Crt | //! | [`store_val`](reg::WRegUnsync::store_val) | write | Urt | //! | [`store_val`](reg::WRegAtomic::store_val) | write | Srt, Crt | //! | [`reset`](reg::WRegUnsync::reset) | write | Urt | //! | [`reset`](reg::WRegAtomic::reset) | write | Srt, Crt | //! | [`modify`](reg::RwRegUnsync::modify) | read-write | Urt | //! //! ## Register Value //! //! Autogenerated field methods for [`RegHold`](reg::RegHold) (`foo` as an //! example field name): //! //! | | Field Width | Mode | //! |------------------------------------------------------------------|-----------|-------| //! | `foo()` ([`read`](reg::field::RRRegFieldBit::read)) | one-bit | read | //! | `foo()` ([`read`](reg::field::RRRegFieldBits::read)) | multi-bit | read | //! | `set_foo()` ([`set`](reg::field::WWRegFieldBit::set)) | one-bit | write | //! | `clear_foo()` ([`clear`](reg::field::WWRegFieldBit::clear)) | one-bit | write | //! | `toggle_foo()` ([`toggle`](reg::field::WWRegFieldBit::toggle)) | one-bit | write | //! | `write_foo(bits)` ([`write`](reg::field::WWRegFieldBits::write)) | multi-bit | write | //! //! # Tags //! //! Each register or field token can have one of three flavors. They are encoded //! by [`tag`](reg::tag)s in their types. For example `Reg<Urt>`, or //! `RegField<Srt>`. //! //! Here are available tags and their properties: //! //! | | Atomic | Affine | //! |-----------------------------------------|--------|--------| //! | [`Urt`](reg::tag::Urt) (Unsynchronized) | - | **+** | //! | [`Srt`](reg::tag::Srt) (Synchronized) | **+** | **+** | //! | [`Crt`](reg::tag::Crt) (Copyable) | **+** | - | //! //! **Atomic** means the token uses more costly atomic operations, but could be //! shared between threads. //! //! **Non-atomic** means the token uses less costly non-atomic operations, but //! couldn't be shared between threads. //! //! **Affine** means the token can't be cloned or copied and uses //! move-semantics. //! //! **Non-affine** means the token could be freely copied. //! //! Tokens of some tags can be converted to the same tokens of other tags using //! `.into_unsync()`, `.into_sync()`, `.into_copy()`. Here is the conversion //! matrix for *register* tokens: //! //! | from \ to | Urt | Srt | Crt | //! |-----------|-------|-------|-------| //! | Urt | **+** | **+** | **+** | //! | Srt | **+** | **+** | **+** | //! | Crt | - | - | **+** | //! //! And here is the conversion matrix for *field* tokens: //! //! | from \ to | Urt | Srt | Crt | //! |-----------|-------|-------|-------| //! | Urt | **+** | - | - | //! | Srt | - | **+** | **+** | //! | Crt | - | - | **+** | //! //! # Mappings //! //! We define concrete register mappings in platform crates. Usually the user //! doesn't need to map registers themselves. But lets have a look to an example //! of how it could be organized for STM32 platform: //! //! ``` //! # #![feature(proc_macro_hygiene)] //! //! use core::mem::size_of_val; //! use drone_core::{reg::prelude::*, token::Token}; //! //! use drone_core::reg; //! //! // ----- this is drone_cortex_m crate ----- //! //! // Registers belong to blocks. Here we declare CTRL register in STK block. //! reg! { //! // The output of this macro is `pub mod stk_ctrl { ... }`. //! /// SysTick control and status register. //! pub mod STK CTRL; //! 0xE000_E010 // the register address in memory //! 0x20 // size of the register in bits //! 0x0000_0000 // reset value of the register //! // Traits to implement for the register token. The most common sets are: //! // RReg RoReg - read-only register //! // RReg WReg - read-write register //! // WReg WoReg - write-only register //! RReg WReg; //! //! // Here we define register fields. //! /// Counter enable. //! ENABLE { //! 0 // the offset of the field //! 1 // the width of the field //! // Traits to implement for the field token. The most common sets are: //! // RRRegField RoRRegField - read-only field //! // RRRegField WWRegField - read-write field //! // WWRegField WoWRegField - read-write field //! RRRegField WWRegField //! } //! } //! //! // Here we define the register tokens index. Actually the result of this macro //! // is another macro, which can be used to define the final register token index //! // or to extend with another registers in downstream crates. It will become //! // clearer below. //! reg::tokens! { //! // The result of this macro is //! // `macro_rules! cortex_m_reg_tokens { ... }`. //! /// Defines an index of core ARM Cortex-M register tokens. //! pub macro cortex_m_reg_tokens; //! // Path prefix to reach registers. //! crate; //! // Absolute path to the current module. //! crate; //! //! // Here we declare all register blocks. This produces `pub mod stk { ... }` //! /// SysTick timer. //! pub mod STK { //! // Declare all registers for this block. This produces: //! // pub mod stk { //! // pub use crate::stk_ctrl as ctrl; //! // } //! CTRL; //! } //! } //! //! // ----- this is drone_stm32 crate ----- //! // This crate parses SVD files provided by the manufacturer and generates more //! // registers. //! //! // Same as above, except it will reuse the upstream macro, resulting in a //! // combined register tokens index. Note `use macro cortex_m_reg_tokens`. //! reg::tokens! { //! /// Defines an index of STM32F103 register tokens. //! pub macro stm32_reg_tokens; //! use macro cortex_m_reg_tokens; //! crate; //! crate; //! } //! //! // ----- this is an application crate ----- //! //! // This macro defines the concrete register tokens index for STM32 MCU. The //! // index is a sum of `drone_cortex_m` and `drone_stm32` registers. The result //! // of this macro is `pub struct Regs { ... }`. //! stm32_reg_tokens! { //! /// Register tokens. //! pub struct Regs; //! } //! //! // Your entry point. //! fn main() { //! // It's unsafe because we can accidentally create more than one instance //! // of the index. //! let reg = unsafe { Regs::take() }; //! // The index doesn't really exist in memory. //! assert_eq!(size_of_val(®), 0); //! assert_eq!(size_of_val(®.stk_ctrl), 0); //! assert_eq!(size_of_val(®.stk_ctrl.enable), 0); //! // Pass the index to your safe entry point. //! trunk(reg); //! } //! //! fn trunk(reg: Regs) {} //! ``` pub mod field; pub mod marker; pub mod prelude; pub mod tag; /// A macro to define a macro to define a set of register tokens. /// /// See [the module level documentation](self) for details. #[doc(inline)] pub use drone_core_macros::reg_tokens as tokens; use self::tag::{Crt, RegAtomic, RegOwned, RegTag, Srt, Urt}; use crate::{bitfield::Bitfield, token::Token}; use core::ptr::{read_volatile, write_volatile}; /// The base trait for a memory-mapped register token. pub trait Reg<T: RegTag>: Token + Sync { /// Opaque storage for register values. /// /// This type is only a storage, without methods to read or write the stored /// bits. It should be used in conjunction with [`RegHold`] or register /// [`field`]s. /// /// See also [`Hold`](RegRef::Hold). type Val: Bitfield; /// Corresponding unsynchronized register token. type UReg: Reg<Urt>; /// Corresponding synchronized register token. type SReg: Reg<Srt>; /// Corresponding copyable register token. type CReg: Reg<Crt>; /// The register address in memory. const ADDRESS: usize; /// The register default value. const RESET: <Self::Val as Bitfield>::Bits; /// Creates a new instance of [`Reg::Val`] from raw `bits`. /// /// # Safety /// /// This function is unsafe because it doesn't require a token. unsafe fn val_from(bits: <Self::Val as Bitfield>::Bits) -> Self::Val; /// Converts into unsynchronized register token. #[inline] fn into_unsync(self) -> Self::UReg where T: RegOwned, { unsafe { Self::UReg::take() } } /// Converts into synchronized register token. #[inline] fn into_sync(self) -> Self::SReg where T: RegOwned, { unsafe { Self::SReg::take() } } /// Converts into copyable register token. #[inline] fn into_copy(self) -> Self::CReg { unsafe { Self::CReg::take() } } /// Returns a reference to the synchronized register token. #[inline] fn as_sync(&self) -> &Self::SReg where T: RegAtomic, { unsafe { &*(self as *const Self as *const Self::SReg) } } /// Creates a new opaque register value, and initializes it with the reset /// value. /// /// See also [`default`](RegRef::default). #[inline] fn default_val(&self) -> Self::Val { unsafe { Self::val_from(Self::RESET) } } } /// Connects [`Reg`] with [`RegHold`]. pub trait RegRef<'a, T: RegTag>: Reg<T> { /// Exposed storage for register values. /// /// See also [`Val`](Reg::Val). type Hold: RegHold<'a, T, Self>; /// Creates a new exposed register value from `val`. fn hold(&'a self, val: Self::Val) -> Self::Hold; /// Creates a new exposed register value, and initializes it with the reset /// value. /// /// See also [`default_val`](Reg::default_val). #[inline] fn default(&'a self) -> Self::Hold { self.hold(self.default_val()) } } /// Exposed storage for register values. /// /// A type implementing this trait should have public getters and setters to /// manipulate the protected data. pub trait RegHold<'a, T, R> where Self: Sized + 'a, T: RegTag, R: Reg<T>, { /// Returns the opaque value. fn val(&self) -> R::Val; /// Replaces the opaque value. fn set_val(&mut self, val: R::Val); } /// Readable register. pub trait RReg<T: RegTag>: Reg<T> { /// Reads the value from the register memory to the opaque value type. /// /// See also [`load`](RReg::load). #[inline] fn load_val(&self) -> Self::Val { unsafe { Self::val_from(read_volatile(self.as_ptr())) } } /// Reads the value from the register memory to the exposed value type. /// /// See also [`load_val`](RReg::load_val). #[inline] fn load<'a>(&'a self) -> <Self as RegRef<'a, T>>::Hold where Self: RegRef<'a, T>, { self.hold(self.load_val()) } /// Returns a raw pointer to the register memory. /// /// See also [`as_mut_ptr`](WReg::as_mut_ptr). #[inline] fn as_ptr(&self) -> *const <Self::Val as Bitfield>::Bits { Self::ADDRESS as *const <Self::Val as Bitfield>::Bits } } /// Writable register. pub trait WReg<T: RegTag>: Reg<T> { /// Returns a mutable raw pointer to the register memory. /// /// See also [`as_ptr`](RReg::as_ptr). #[inline] fn as_mut_ptr(&self) -> *mut <Self::Val as Bitfield>::Bits { Self::ADDRESS as *mut <Self::Val as Bitfield>::Bits } } /// Read-only register. pub trait RoReg<T: RegTag>: RReg<T> {} /// Write-only register. pub trait WoReg<T: RegTag>: WReg<T> {} /// Non-atomic operations for writable register. // FIXME https://github.com/rust-lang/rust/issues/46397 pub trait WRegUnsync<'a>: WReg<Urt> + RegRef<'a, Urt> { /// Passes the reset value to the closure `f`, then writes the result of the /// closure into the register memory. /// /// See also [`store_val`](WRegUnsync::store_val). fn store<F>(&'a mut self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, Urt>>::Hold, ) -> &'b mut <Self as RegRef<'a, Urt>>::Hold; /// Writes an opaque value `val` into the register memory. /// /// See also [`store`](WRegUnsync::store). fn store_val(&mut self, val: Self::Val); /// Writes the reset value into the register memory. fn reset(&'a mut self); } /// Atomic operations for writable register. // FIXME https://github.com/rust-lang/rust/issues/46397 pub trait WRegAtomic<'a, T: RegAtomic>: WReg<T> + RegRef<'a, T> { /// Passes the reset value to the closure `f`, then writes the result of the /// closure into the register memory. /// /// See also [`store_val`](WRegAtomic::store_val). fn store<F>(&'a self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, T>>::Hold, ) -> &'b mut <Self as RegRef<'a, T>>::Hold; /// Writes an opaque value `val` into the register memory. /// /// See also [`store`](WRegAtomic::store). fn store_val(&self, val: Self::Val); /// Writes the reset value into the register memory. fn reset(&'a self); } /// Non-atomic operations for read-write register. // FIXME https://github.com/rust-lang/rust/issues/46397 pub trait RwRegUnsync<'a>: RReg<Urt> + WRegUnsync<'a> + RegRef<'a, Urt> { /// Reads the value from the register memory, then passes the value to the /// closure `f`, then writes the result of the closure back to the register /// memory. /// /// This operation is non-atomic, thus it requires a mutable reference to /// the token. fn modify<F>(&'a mut self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, Urt>>::Hold, ) -> &'b mut <Self as RegRef<'a, Urt>>::Hold; } impl<'a, R> WRegUnsync<'a> for R where R: WReg<Urt> + RegRef<'a, Urt>, { #[inline] fn store<F>(&'a mut self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, Urt>>::Hold, ) -> &'b mut <Self as RegRef<'a, Urt>>::Hold, { unsafe { write_volatile(self.as_mut_ptr(), f(&mut self.default()).val().bits()); } } #[inline] fn store_val(&mut self, val: Self::Val) { unsafe { write_volatile(self.as_mut_ptr(), val.bits()) }; } #[inline] fn reset(&'a mut self) { unsafe { write_volatile(self.as_mut_ptr(), self.default_val().bits()) }; } } impl<'a, T, R> WRegAtomic<'a, T> for R where T: RegAtomic, R: WReg<T> + RegRef<'a, T>, // Extra bound to make the dot operator checking `WRegUnsync` first. R::Val: Bitfield, { #[inline] fn store<F>(&'a self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, T>>::Hold, ) -> &'b mut <Self as RegRef<'a, T>>::Hold, { self.store_val(f(&mut self.default()).val()); } #[inline] fn store_val(&self, val: Self::Val) { unsafe { write_volatile(self.as_mut_ptr(), val.bits()) }; } #[inline] fn reset(&'a self) { self.store_val(self.default_val()); } } impl<'a, R> RwRegUnsync<'a> for R where R: RReg<Urt> + WRegUnsync<'a> + RegRef<'a, Urt>, { #[inline] fn modify<F>(&'a mut self, f: F) where F: for<'b> FnOnce( &'b mut <Self as RegRef<'a, Urt>>::Hold, ) -> &'b mut <Self as RegRef<'a, Urt>>::Hold, { unsafe { write_volatile(self.as_mut_ptr(), f(&mut self.load()).val().bits()); } } } mod compile_tests { //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg! { //! pub mod TST TST_RW_REG; //! 0xDEAD_BEEF 0x20 0xBEEF_CACE RReg WReg; //! TST_BIT { 0 1 RRRegField WWRegField } //! } //! fn assert_rw_reg_unsync<'a, T: drone_core::reg::RwRegUnsync<'a>>() {} //! fn main() { //! assert_rw_reg_unsync::<tst_tst_rw_reg::Reg<Srt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg! { //! pub mod TST TST_RO_REG; //! 0xDEAD_BEEF 0x20 0xBEEF_CACE RReg RoReg; //! TST_BIT { 0 1 RRRegField RoRRegField } //! } //! fn assert_rw_reg_unsync<'a, T: drone_core::reg::RwRegUnsync<'a>>() {} //! fn main() { //! assert_rw_reg_unsync::<tst_tst_ro_reg::Reg<Urt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg! { //! pub mod TST TST_WO_REG; //! 0xDEAD_BEEF 0x20 0xBEEF_CACE WReg WoReg; //! TST_BIT { 0 1 WWRegField WoWRegField } //! } //! fn assert_rw_reg_unsync<'a, T: drone_core::reg::RwRegUnsync<'a>>() {} //! fn main() { //! assert_rw_reg_unsync::<tst_tst_wo_reg::Reg<Urt>>(); //! } //! ``` //! //! ``` //! use drone_core::reg::prelude::*; //! drone_core::reg! { //! pub mod FOO BAR; //! 0xDEAD_BEEF 0x20 0xBEEF_CACE RReg WReg; //! BAZ { 0 1 RRRegField WWRegField } //! } //! fn assert_rw_reg_unsync<'a, T: drone_core::reg::RwRegUnsync<'a>>() {} //! fn main() { //! assert_rw_reg_unsync::<foo_bar::Reg<Urt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_copy<T: Copy>() {} //! fn main() { //! assert_copy::<foo_bar::Reg<Urt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_clone<T: Clone>() {} //! fn main() { //! assert_clone::<foo_bar::Reg<Urt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_copy<T: Copy>() {} //! fn main() { //! assert_copy::<foo_bar::Reg<Srt>>(); //! } //! ``` //! //! ```compile_fail //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_clone<T: Clone>() {} //! fn main() { //! assert_clone::<foo_bar::Reg<Srt>>(); //! } //! ``` //! //! ``` //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_copy<T: Copy>() {} //! fn main() { //! assert_copy::<foo_bar::Reg<Crt>>(); //! } //! ``` //! //! ``` //! use drone_core::reg::prelude::*; //! drone_core::reg!(pub mod FOO BAR; 0xDEAD_BEEF 0x20 0xBEEF_CACE; BAZ { 0 1 }); //! fn assert_clone<T: Clone>() {} //! fn main() { //! assert_clone::<foo_bar::Reg<Crt>>(); //! } //! ``` //! //! ```compile_fail //! #![feature(proc_macro_hygiene)] //! use drone_core::reg; //! reg::tokens!(macro reg_tokens; crate; crate;); //! reg_tokens!(struct Regs1;); //! reg_tokens!(struct Regs2;); //! ``` //! //! ```compile_fail //! #![feature(proc_macro_hygiene)] //! use drone_core::reg; //! reg::tokens!(macro reg_tokens1; crate; crate;); //! reg::tokens!(macro reg_tokens2; crate; crate;); //! reg_tokens1!(struct Regs1;); //! reg_tokens2!(struct Regs2;); //! ``` }