1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
//! Futures //! //! This module contains a number of functions for working with `Future`s, //! including the `FutureExt` trait which adds methods to `Future` types. #[cfg(feature = "compat")] use crate::compat::Compat; use core::pin::Pin; use futures_core::{ future::TryFuture, stream::TryStream, task::{Context, Poll}, }; #[cfg(feature = "sink")] use futures_sink::Sink; // Combinators mod and_then; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::and_then::AndThen; mod err_into; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::err_into::ErrInto; #[cfg(feature = "sink")] mod flatten_sink; #[cfg(feature = "sink")] #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::flatten_sink::FlattenSink; mod inspect_ok; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::inspect_ok::InspectOk; mod inspect_err; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::inspect_err::InspectErr; mod into_future; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::into_future::IntoFuture; mod map_err; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::map_err::MapErr; mod map_ok; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::map_ok::MapOk; mod or_else; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::or_else::OrElse; mod try_flatten_stream; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::try_flatten_stream::TryFlattenStream; mod unwrap_or_else; #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/57411 pub use self::unwrap_or_else::UnwrapOrElse; // Implementation details mod flatten_stream_sink; pub(crate) use self::flatten_stream_sink::FlattenStreamSink; mod try_chain; pub(crate) use self::try_chain::{TryChain, TryChainAction}; impl<Fut: ?Sized + TryFuture> TryFutureExt for Fut {} /// Adapters specific to [`Result`]-returning futures pub trait TryFutureExt: TryFuture { /// Flattens the execution of this future when the successful result of this /// future is a [`Sink`]. /// /// This can be useful when sink initialization is deferred, and it is /// convenient to work with that sink as if the sink was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. /// /// # Examples /// /// ``` /// use futures::future::{Future, TryFutureExt}; /// use futures::sink::Sink; /// # use futures::channel::mpsc::{self, SendError}; /// # type T = i32; /// # type E = SendError; /// /// fn make_sink_async() -> impl Future<Output = Result< /// impl Sink<T, Error = E>, /// E, /// >> { // ... } /// # let (tx, _rx) = mpsc::unbounded::<i32>(); /// # futures::future::ready(Ok(tx)) /// # } /// fn take_sink(sink: impl Sink<T, Error = E>) { /* ... */ } /// /// let fut = make_sink_async(); /// take_sink(fut.flatten_sink()) /// ``` #[cfg(feature = "sink")] fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok> where Self::Ok: Sink<Item, Error = Self::Error>, Self: Sized, { FlattenSink::new(self) } /// Maps this future's success value to a different value. /// /// This method can be used to change the [`Ok`](TryFuture::Ok) type of the /// future into a different type. It is similar to the [`Result::map`] /// method. You can use this method to chain along a computation once the /// future has been resolved. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Ok`]. If it resolves to an [`Err`], panics, or is dropped, then /// the provided closure will never be invoked. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Ok::<i32, i32>(1) }; /// let future = future.map_ok(|x| x + 3); /// assert_eq!(future.await, Ok(4)); /// # }); /// ``` /// /// Calling [`map_ok`](TryFutureExt::map_ok) on an errored future has no /// effect: /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Err::<i32, i32>(1) }; /// let future = future.map_ok(|x| x + 3); /// assert_eq!(future.await, Err(1)); /// # }); /// ``` fn map_ok<T, F>(self, f: F) -> MapOk<Self, F> where F: FnOnce(Self::Ok) -> T, Self: Sized, { MapOk::new(self, f) } /// Maps this future's error value to a different value. /// /// This method can be used to change the [`Error`](TryFuture::Error) type /// of the future into a different type. It is similar to the /// [`Result::map_err`] method. You can use this method for example to /// ensure that futures have the same [`Error`](TryFuture::Error) type when /// using [`select!`] or [`join!`]. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Err`]. If it resolves to an [`Ok`], panics, or is dropped, then /// the provided closure will never be invoked. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Err::<i32, i32>(1) }; /// let future = future.map_err(|x| x + 3); /// assert_eq!(future.await, Err(4)); /// # }); /// ``` /// /// Calling [`map_err`](TryFutureExt::map_err) on a successful future has /// no effect: /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Ok::<i32, i32>(1) }; /// let future = future.map_err(|x| x + 3); /// assert_eq!(future.await, Ok(1)); /// # }); /// ``` fn map_err<E, F>(self, f: F) -> MapErr<Self, F> where F: FnOnce(Self::Error) -> E, Self: Sized, { MapErr::new(self, f) } /// Maps this future's [`Error`](TryFuture::Error) to a new error type /// using the [`Into`](std::convert::Into) trait. /// /// This method does for futures what the `?`-operator does for /// [`Result`]: It lets the compiler infer the type of the resulting /// error. Just as [`map_err`](TryFutureExt::map_err), this is useful for /// example to ensure that futures have the same [`Error`](TryFuture::Error) /// type when using [`select!`] or [`join!`]. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future_err_u8 = async { Err::<(), u8>(1) }; /// let future_err_i32 = future_err_u8.err_into::<i32>(); /// # }); /// ``` fn err_into<E>(self) -> ErrInto<Self, E> where Self: Sized, Self::Error: Into<E>, { ErrInto::new(self) } /// Executes another future after this one resolves successfully. The /// success value is passed to a closure to create this subsequent future. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Ok`]. If this future resolves to an [`Err`], panics, or is /// dropped, then the provided closure will never be invoked. The /// [`Error`](TryFuture::Error) type of this future and the future /// returned by `f` have to match. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Ok::<i32, i32>(1) }; /// let future = future.and_then(|x| async move { Ok::<i32, i32>(x + 3) }); /// assert_eq!(future.await, Ok(4)); /// # }); /// ``` /// /// Calling [`and_then`](TryFutureExt::and_then) on an errored future has no /// effect: /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Err::<i32, i32>(1) }; /// let future = future.and_then(|x| async move { Err::<i32, i32>(x + 3) }); /// assert_eq!(future.await, Err(1)); /// # }); /// ``` fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F> where F: FnOnce(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized, { AndThen::new(self, f) } /// Executes another future if this one resolves to an error. The /// error value is passed to a closure to create this subsequent future. /// /// The provided closure `f` will only be called if this future is resolved /// to an [`Err`]. If this future resolves to an [`Ok`], panics, or is /// dropped, then the provided closure will never be invoked. The /// [`Ok`](TryFuture::Ok) type of this future and the future returned by `f` /// have to match. /// /// Note that this method consumes the future it is called on and returns a /// wrapped version of it. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Err::<i32, i32>(1) }; /// let future = future.or_else(|x| async move { Err::<i32, i32>(x + 3) }); /// assert_eq!(future.await, Err(4)); /// # }); /// ``` /// /// Calling [`or_else`](TryFutureExt::or_else) on a successful future has /// no effect: /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Ok::<i32, i32>(1) }; /// let future = future.or_else(|x| async move { Ok::<i32, i32>(x + 3) }); /// assert_eq!(future.await, Ok(1)); /// # }); /// ``` fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F> where F: FnOnce(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized, { OrElse::new(self, f) } /// Do something with the success value of a future before passing it on. /// /// When using futures, you'll often chain several of them together. While /// working on such code, you might want to check out what's happening at /// various parts in the pipeline, without consuming the intermediate /// value. To do that, insert a call to `inspect_ok`. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::TryFutureExt; /// /// let future = async { Ok::<_, ()>(1) }; /// let new_future = future.inspect_ok(|&x| println!("about to resolve: {}", x)); /// assert_eq!(new_future.await, Ok(1)); /// # }); /// ``` fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F> where F: FnOnce(&Self::Ok), Self: Sized, { InspectOk::new(self, f) } /// Do something with the error value of a future before passing it on. /// /// When using futures, you'll often chain several of them together. While /// working on such code, you might want to check out what's happening at /// various parts in the pipeline, without consuming the intermediate /// value. To do that, insert a call to `inspect_err`. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::TryFutureExt; /// /// let future = async { Err::<(), _>(1) }; /// let new_future = future.inspect_err(|&x| println!("about to error: {}", x)); /// assert_eq!(new_future.await, Err(1)); /// # }); /// ``` fn inspect_err<F>(self, f: F) -> InspectErr<Self, F> where F: FnOnce(&Self::Error), Self: Sized, { InspectErr::new(self, f) } /// Flatten the execution of this future when the successful result of this /// future is a stream. /// /// This can be useful when stream initialization is deferred, and it is /// convenient to work with that stream as if stream was available at the /// call site. /// /// Note that this function consumes this future and returns a wrapped /// version of it. /// /// # Examples /// /// ``` /// # futures::executor::block_on(async { /// use futures::future::TryFutureExt; /// use futures::stream::{self, TryStreamExt}; /// /// let stream_items = vec![17, 18, 19].into_iter().map(Ok); /// let future_of_a_stream = async { Ok::<_, ()>(stream::iter(stream_items)) }; /// /// let stream = future_of_a_stream.try_flatten_stream(); /// let list = stream.try_collect::<Vec<_>>().await; /// assert_eq!(list, Ok(vec![17, 18, 19])); /// # }); /// ``` fn try_flatten_stream(self) -> TryFlattenStream<Self> where Self::Ok: TryStream<Error = Self::Error>, Self: Sized, { TryFlattenStream::new(self) } /// Unwraps this future's ouput, producing a future with this future's /// [`Ok`](TryFuture::Ok) type as its /// [`Output`](std::future::Future::Output) type. /// /// If this future is resolved successfully, the returned future will /// contain the original future's success value as output. Otherwise, the /// closure `f` is called with the error value to produce an alternate /// success value. /// /// This method is similar to the [`Result::unwrap_or_else`] method. /// /// # Examples /// /// ``` /// use futures::future::TryFutureExt; /// /// # futures::executor::block_on(async { /// let future = async { Err::<(), &str>("Boom!") }; /// let future = future.unwrap_or_else(|_| ()); /// assert_eq!(future.await, ()); /// # }); /// ``` fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F> where Self: Sized, F: FnOnce(Self::Error) -> Self::Ok, { UnwrapOrElse::new(self, f) } /// Wraps a [`TryFuture`] into a future compatable with libraries using /// futures 0.1 future definitons. Requires the `compat` feature to enable. #[cfg(feature = "compat")] fn compat(self) -> Compat<Self> where Self: Sized + Unpin, { Compat::new(self) } /// Wraps a [`TryFuture`] into a type that implements /// [`Future`](std::future::Future). /// /// [`TryFuture`]s currently do not implement the /// [`Future`](std::future::Future) trait due to limitations of the /// compiler. /// /// # Examples /// /// ``` /// use futures::future::{Future, TryFuture, TryFutureExt}; /// /// # type T = i32; /// # type E = (); /// fn make_try_future() -> impl TryFuture<Ok = T, Error = E> { // ... } /// # async { Ok::<i32, ()>(1) } /// # } /// fn take_future(future: impl Future<Output = Result<T, E>>) { /* ... */ } /// /// take_future(make_try_future().into_future()); /// ``` fn into_future(self) -> IntoFuture<Self> where Self: Sized, { IntoFuture::new(self) } /// A convenience method for calling [`TryFuture::try_poll`] on [`Unpin`] /// future types. fn try_poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Result<Self::Ok, Self::Error>> where Self: Unpin, { Pin::new(self).try_poll(cx) } }