1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use core::{
    cell::UnsafeCell,
    fmt,
    ops::{Deref, DerefMut},
    sync::atomic::{AtomicBool, Ordering},
};

/// A mutual exclusion primitive useful for protecting shared data.
///
/// The mutex can be statically initialized or created via a [`Mutex::new`]
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guard
/// returned from [`Mutex::try_lock`], which guarantees that the data is only
/// ever accessed when the mutex is locked.
pub struct Mutex<T: ?Sized> {
    state: AtomicBool,
    data: UnsafeCell<T>,
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`try_lock`](Mutex::try_lock) method on
/// [`Mutex`].
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized> {
    mutex: &'a Mutex<T>,
}

unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}

impl<T> Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use drone_core::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    #[inline]
    pub const fn new(data: T) -> Self {
        Self {
            state: AtomicBool::new(false),
            data: UnsafeCell::new(data),
        }
    }

    /// Consumes this mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use drone_core::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// assert_eq!(mutex.into_inner(), 0);
    /// ```
    #[inline]
    pub fn into_inner(self) -> T {
        self.data.into_inner()
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then `None` is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use drone_core::sync::Mutex;
    /// use std::{sync::Arc, thread};
    ///
    /// let mutex = Arc::new(Mutex::new(0));
    /// let c_mutex = Arc::clone(&mutex);
    ///
    /// thread::spawn(move || {
    ///     let mut lock = c_mutex.try_lock();
    ///     if let Some(ref mut mutex) = lock {
    ///         **mutex = 10;
    ///     } else {
    ///         println!("try_lock failed");
    ///     }
    /// })
    /// .join()
    /// .expect("thread::spawn failed");
    /// assert_eq!(*mutex.try_lock().unwrap(), 10);
    /// ```
    #[inline]
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if self.state.swap(true, Ordering::Acquire) {
            None
        } else {
            Some(MutexGuard { mutex: self })
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use drone_core::sync::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.try_lock().unwrap(), 10);
    /// ```
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data.get() }
    }
}

impl<T> From<T> for Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use. This is
    /// equivalent to [`Mutex::new`].
    #[inline]
    fn from(data: T) -> Self {
        Self::new(data)
    }
}

impl<T: ?Sized + Default> Default for Mutex<T> {
    /// Creates a `Mutex<T>`, with the `Default` value for T.
    #[inline]
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(guard) = self.try_lock() {
            f.debug_struct("Mutex").field("data", &&*guard).finish()
        } else {
            struct LockedPlaceholder;
            impl fmt::Debug for LockedPlaceholder {
                fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                    f.write_str("<locked>")
                }
            }
            f.debug_struct("Mutex")
                .field("data", &LockedPlaceholder)
                .finish()
        }
    }
}

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.mutex.data.get() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.mutex.data.get() }
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    #[inline]
    fn drop(&mut self) {
        self.mutex.state.store(false, Ordering::Release);
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("MutexGuard")
            .field("mutex", &self.mutex)
            .finish()
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(test)]
mod tests {
    use crate::sync::Mutex;
    use std::{
        sync::{
            atomic::{AtomicUsize, Ordering},
            mpsc::channel,
            Arc,
        },
        thread,
    };

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn try_lock() {
        let m = Mutex::new(());
        *m.try_lock().unwrap() = ();
    }

    #[test]
    fn into_inner() {
        let m = Mutex::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = Mutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn get_mut() {
        let mut m = Mutex::new(NonCopy(10));
        *m.get_mut() = NonCopy(20);
        assert_eq!(m.into_inner(), NonCopy(20));
    }

    #[test]
    fn mutex_arc_nested() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = Arc::new(Mutex::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.try_lock().unwrap();
            let lock2 = lock.try_lock().unwrap();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn mutex_unsized() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.try_lock().unwrap();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.try_lock().unwrap(), comp);
    }
}