1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#![cfg_attr(feature = "std", allow(unreachable_code, unused_variables))]

use crate::{uarte::Periph, DSO_PORTS};
use core::{
    cmp::min,
    ptr,
    ptr::{read_volatile, NonNull},
};
use drone_cortexm::reg::prelude::*;
use drone_nrf_map::periph::uarte::{traits::*, UarteMap};

const KEY: u16 = 0b100_1011;
const MAX_PACKET_SIZE: usize = 16;

#[doc(hidden)]
pub unsafe trait Logger {
    type UarteMap: UarteMap;

    const BAUD_RATE: u32;
    const BUF_SIZE: u32;
    const PIN_NUMBER: u32;

    fn buf() -> NonNull<u8>;
}

#[doc(hidden)]
#[must_use]
#[inline]
pub fn is_enabled<T: Logger>(port: u8) -> bool {
    unsafe { read_volatile(&DSO_PORTS) & 1 << port != 0 }
}

#[doc(hidden)]
#[inline]
pub fn write_bytes<T: Logger>(port: u8, bytes: &[u8]) {
    for bytes in bytes.chunks(min(T::BUF_SIZE as usize - 2, MAX_PACKET_SIZE)) {
        unsafe { write_packet::<T>(port, bytes) };
    }
}

#[doc(hidden)]
#[inline]
pub fn flush<T: Logger>() {
    let periph = Periph::<T::UarteMap>::summon();
    // UART transmitter has started.
    if !(is_init(&periph) && periph.uarte_events_txstarted.events_txstarted().read_bit()) {
        return;
    }
    // Last TX byte transmitted.
    while !periph.uarte_events_endtx.events_endtx().read_bit() {}
}

fn is_init<T: UarteMap>(periph: &Periph<T>) -> bool {
    periph.uarte_enable.enable().read_bits() == 8 // enable UARTE
}

fn init<T: UarteMap>(periph: &mut Periph<T>, buf_ptr: *const u8, pin_number: u32, baud_rate: u32) {
    if is_init(periph) {
        return;
    }
    periph.uarte_psel_txd.store_reg(|r, v| {
        r.pin().write(v, pin_number); // pin number
        r.connect().clear(v); // connect
    });
    periph.uarte_psel_rxd.store_reg(|r, v| {
        r.connect().set(v); // disconnect
    });
    periph.uarte_psel_rts.store_reg(|r, v| {
        r.connect().set(v); // disconnect
    });
    periph.uarte_psel_cts.store_reg(|r, v| {
        r.connect().set(v); // disconnect
    });
    periph.uarte_txd_ptr.store_reg(|r, v| {
        r.ptr().write(v, buf_ptr as u32); // data pointer
    });
    periph.uarte_baudrate.store_reg(|r, v| {
        r.baudrate().write(v, baud_rate); // baud rate
    });
    periph.uarte_enable.store_reg(|r, v| {
        r.enable().write(v, 8); // enable UARTE
    });
}

unsafe fn write_packet<T: Logger>(port: u8, bytes: &[u8]) {
    #[cfg(feature = "std")]
    return;
    llvm_asm!("cpsid i" :::: "volatile");
    let mut periph = Periph::<T::UarteMap>::summon();
    init(&mut periph, T::buf().as_ptr(), T::PIN_NUMBER, T::BAUD_RATE);
    flush::<T>();
    let count = unsafe { fill_buf(T::buf().as_ptr(), port, bytes) };
    periph.uarte_txd_maxcnt.store_reg(|r, v| {
        r.maxcnt().write(v, count); // maximum number of bytes in transmit buffer
    });
    periph.uarte_events_txstarted.store_reg(|r, v| {
        r.events_txstarted().clear(v); // uart transmitter has started
    });
    periph.uarte_events_endtx.store_reg(|r, v| {
        r.events_endtx().clear(v); // last TX byte transmitted
    });
    periph.uarte_tasks_starttx.store_reg(|r, v| {
        r.tasks_starttx().set(v); // start UART transmitter
    });
    llvm_asm!("cpsie i" :::: "volatile");
}

#[allow(clippy::cast_ptr_alignment)]
unsafe fn fill_buf(buf_ptr: *mut u8, port: u8, bytes: &[u8]) -> u32 {
    unsafe {
        *buf_ptr.cast::<u16>() =
            (KEY << 9 | u16::from(port) << 4 | (bytes.len() as u16 - 1)).to_be();
        ptr::copy_nonoverlapping(bytes.as_ptr(), buf_ptr.add(2), bytes.len());
        bytes.len() as u32 + 2
    }
}