1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use super::pool::{Fits, Pool};
use core::{
    alloc::{AllocError, Layout},
    ptr,
    ptr::NonNull,
    slice::SliceIndex,
};

/// Allocator for a generic memory pools layout.
///
/// The trait is supposed to be implemented for an array of pools.
/// [`heap`](crate::heap) macro should be used to generate the concrete type and
/// the implementation.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub trait Allocator: Sized {
    /// The total number of memory pools.
    const POOL_COUNT: usize;

    /// Returns a reference to a pool or subslice, without doing bounds
    /// checking.
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is Undefined Behavior.
    unsafe fn get_pool_unchecked<I>(&self, index: I) -> &I::Output
    where
        I: SliceIndex<[Pool]>;
}

/// Does a binary search for the pool with the smallest block size to fit
/// `value`.
pub fn binary_search<A: Allocator, T: Fits>(heap: &A, value: T) -> usize {
    let (mut left, mut right) = (0, A::POOL_COUNT);
    while right > left {
        let middle = left + ((right - left) >> 1);
        let pool = unsafe { heap.get_pool_unchecked(middle) };
        if value.fits(pool) {
            right = middle;
        } else {
            left = middle + 1;
        }
    }
    left
}

#[doc(hidden)]
pub fn alloc<A: Allocator>(heap: &A, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
    #[cfg(feature = "heaptrace")]
    trace::alloc(layout);
    if layout.size() == 0 {
        return Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0));
    }
    for pool_idx in binary_search(heap, &layout)..A::POOL_COUNT {
        let pool = unsafe { heap.get_pool_unchecked(pool_idx) };
        if let Some(ptr) = pool.alloc() {
            return Ok(NonNull::slice_from_raw_parts(ptr, pool.size()));
        }
    }
    Err(AllocError)
}

#[doc(hidden)]
pub fn alloc_zeroed<A: Allocator>(heap: &A, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
    let ptr = alloc(heap, layout)?;
    unsafe { ptr.as_non_null_ptr().as_ptr().write_bytes(0, ptr.len()) }
    Ok(ptr)
}

#[doc(hidden)]
pub unsafe fn dealloc<A: Allocator>(heap: &A, ptr: NonNull<u8>, layout: Layout) {
    #[cfg(feature = "heaptrace")]
    trace::dealloc(layout);
    if layout.size() == 0 {
        return;
    }
    unsafe {
        let pool = heap.get_pool_unchecked(binary_search(heap, ptr));
        pool.dealloc(ptr);
    }
}

#[doc(hidden)]
pub unsafe fn grow<A: Allocator>(
    heap: &A,
    ptr: NonNull<u8>,
    old_layout: Layout,
    new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
    #[cfg(feature = "heaptrace")]
    trace::grow(layout, new_size);
    unsafe {
        let new_ptr = alloc(heap, new_layout)?;
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_layout.size());
        dealloc(heap, ptr, old_layout);
        Ok(new_ptr)
    }
}

#[doc(hidden)]
pub unsafe fn grow_zeroed<A: Allocator>(
    heap: &A,
    ptr: NonNull<u8>,
    old_layout: Layout,
    new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
    #[cfg(feature = "heaptrace")]
    trace::grow(layout, new_size);
    unsafe {
        let new_ptr = alloc_zeroed(heap, new_layout)?;
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_layout.size());
        dealloc(heap, ptr, old_layout);
        Ok(new_ptr)
    }
}

#[doc(hidden)]
pub unsafe fn shrink<A: Allocator>(
    heap: &A,
    ptr: NonNull<u8>,
    old_layout: Layout,
    new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
    #[cfg(feature = "heaptrace")]
    trace::shrink(layout, new_size);
    unsafe {
        let new_ptr = alloc(heap, new_layout)?;
        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_layout.size());
        dealloc(heap, ptr, old_layout);
        Ok(new_ptr)
    }
}

#[cfg(feature = "heaptrace")]
mod trace {
    use crate::{
        heap::HEAPTRACE_KEY,
        log::{Port, HEAPTRACE_PORT},
    };
    use core::alloc::Layout;

    #[inline(always)]
    pub(super) fn alloc(layout: Layout) {
        #[inline(never)]
        fn trace(layout: Layout) {
            Port::new(HEAPTRACE_PORT)
                .write::<u32>((0xA1 << 24 | layout.size() as u32 >> 24) ^ HEAPTRACE_KEY)
                .write::<u32>((0xA2 << 24 | layout.size() as u32 & 0xFF) ^ HEAPTRACE_KEY);
        }
        if Port::new(HEAPTRACE_PORT).is_enabled() {
            trace(layout);
        }
    }

    #[inline(always)]
    pub(super) fn dealloc(layout: Layout) {
        #[inline(never)]
        fn trace(layout: Layout) {
            Port::new(HEAPTRACE_PORT)
                .write::<u32>((0xD1 << 24 | layout.size() as u32 >> 24) ^ HEAPTRACE_KEY)
                .write::<u32>((0xD2 << 24 | layout.size() as u32 & 0xFF) ^ HEAPTRACE_KEY);
        }
        if Port::new(HEAPTRACE_PORT).is_enabled() {
            trace(layout);
        }
    }

    #[inline(always)]
    pub(super) fn grow(layout: Layout, new_size: usize) {
        #[inline(never)]
        fn trace(layout: Layout, new_size: usize) {
            Port::new(HEAPTRACE_PORT)
                .write::<u32>((0xB1 << 24 | layout.size() as u32 >> 24) ^ HEAPTRACE_KEY)
                .write::<u32>(
                    (0xB2 << 24 | (layout.size() as u32 & 0xFF) << 16 | new_size as u32 >> 16)
                        ^ HEAPTRACE_KEY,
                )
                .write::<u32>((0xB3 << 24 | new_size as u32 & 0xFFFF) ^ HEAPTRACE_KEY);
        }
        if Port::new(HEAPTRACE_PORT).is_enabled() {
            trace(layout, new_size);
        }
    }

    #[inline(always)]
    pub(super) fn shrink(layout: Layout, new_size: usize) {
        #[inline(never)]
        fn trace(layout: Layout, new_size: usize) {
            Port::new(HEAPTRACE_PORT)
                .write::<u32>((0xC1 << 24 | layout.size() as u32 >> 24) ^ HEAPTRACE_KEY)
                .write::<u32>(
                    (0xC2 << 24 | (layout.size() as u32 & 0xFF) << 16 | new_size as u32 >> 16)
                        ^ HEAPTRACE_KEY,
                )
                .write::<u32>((0xC3 << 24 | new_size as u32 & 0xFFFF) ^ HEAPTRACE_KEY);
        }
        if Port::new(HEAPTRACE_PORT).is_enabled() {
            trace(layout, new_size);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    struct TestHeap {
        pools: [Pool; 10],
    }

    impl Allocator for TestHeap {
        const POOL_COUNT: usize = 10;

        unsafe fn get_pool_unchecked<I>(&self, index: I) -> &I::Output
        where
            I: SliceIndex<[Pool]>,
        {
            unsafe { self.pools.get_unchecked(index) }
        }
    }

    #[test]
    fn test_binary_search() {
        fn search_layout(heap: &TestHeap, size: usize) -> Option<usize> {
            let pool_idx = binary_search(heap, &Layout::from_size_align(size, 4).unwrap());
            if pool_idx < TestHeap::POOL_COUNT {
                unsafe { Some(heap.get_pool_unchecked(pool_idx).size()) }
            } else {
                None
            }
        }
        fn search_ptr(heap: &TestHeap, ptr: usize) -> Option<usize> {
            let pool_idx = binary_search(heap, unsafe { NonNull::new_unchecked(ptr as *mut u8) });
            if pool_idx < TestHeap::POOL_COUNT {
                unsafe { Some(heap.get_pool_unchecked(pool_idx).size()) }
            } else {
                None
            }
        }
        let heap = TestHeap {
            pools: [
                Pool::new(20, 2, 100),
                Pool::new(220, 5, 100),
                Pool::new(720, 8, 100),
                Pool::new(1520, 12, 100),
                Pool::new(2720, 16, 100),
                Pool::new(4320, 23, 100),
                Pool::new(6620, 38, 100),
                Pool::new(10420, 56, 100),
                Pool::new(16020, 72, 100),
                Pool::new(23220, 91, 100),
            ],
        };
        assert_eq!(search_layout(&heap, 1), Some(2));
        assert_eq!(search_layout(&heap, 2), Some(2));
        assert_eq!(search_layout(&heap, 15), Some(16));
        assert_eq!(search_layout(&heap, 16), Some(16));
        assert_eq!(search_layout(&heap, 17), Some(23));
        assert_eq!(search_layout(&heap, 91), Some(91));
        assert_eq!(search_layout(&heap, 92), None);
        assert_eq!(search_ptr(&heap, 0), Some(2));
        assert_eq!(search_ptr(&heap, 20), Some(2));
        assert_eq!(search_ptr(&heap, 219), Some(2));
        assert_eq!(search_ptr(&heap, 220), Some(5));
        assert_eq!(search_ptr(&heap, 719), Some(5));
        assert_eq!(search_ptr(&heap, 720), Some(8));
        assert_eq!(search_ptr(&heap, 721), Some(8));
        assert_eq!(search_ptr(&heap, 5000), Some(23));
        assert_eq!(search_ptr(&heap, 23220), Some(91));
        assert_eq!(search_ptr(&heap, 32319), Some(91));
        assert_eq!(search_ptr(&heap, 32320), None);
        assert_eq!(search_ptr(&heap, 50000), None);
    }

    #[test]
    fn allocations() {
        unsafe fn alloc_and_set(heap: &TestHeap, layout: Layout, value: u8) {
            unsafe {
                *alloc(heap, layout).unwrap().as_mut_ptr() = value;
            }
        }
        let mut m = [0u8; 3230];
        let o = &mut m as *mut _ as usize;
        let heap = TestHeap {
            pools: [
                Pool::new(o + 0, 2, 10),
                Pool::new(o + 20, 5, 10),
                Pool::new(o + 70, 8, 10),
                Pool::new(o + 150, 12, 10),
                Pool::new(o + 270, 16, 10),
                Pool::new(o + 430, 23, 10),
                Pool::new(o + 660, 38, 10),
                Pool::new(o + 1040, 56, 10),
                Pool::new(o + 1600, 72, 10),
                Pool::new(o + 2320, 91, 10),
            ],
        };
        let layout = Layout::from_size_align(32, 1).unwrap();
        unsafe {
            alloc_and_set(&heap, layout, 111);
            assert_eq!(m[660], 111);
            alloc_and_set(&heap, layout, 222);
            assert_eq!(m[698], 222);
            alloc_and_set(&heap, layout, 123);
            assert_eq!(m[736], 123);
            dealloc(&heap, NonNull::new_unchecked((o + 660) as *mut u8), layout);
            assert_eq!(m[660], 0);
            dealloc(&heap, NonNull::new_unchecked((o + 736) as *mut u8), layout);
            assert_eq!(*(&m[736] as *const _ as *const usize), o + 660);
            alloc_and_set(&heap, layout, 202);
            assert_eq!(m[736], 202);
            dealloc(&heap, NonNull::new_unchecked((o + 698) as *mut u8), layout);
            assert_eq!(*(&m[698] as *const _ as *const usize), o + 660);
            dealloc(&heap, NonNull::new_unchecked((o + 736) as *mut u8), layout);
            assert_eq!(*(&m[736] as *const _ as *const usize), o + 698);
        }
    }
}