[][src]Module drone_core::periph

Peripheral is a group of memory-mapped registers or their fields.

Singular Peripheral

Singular peripheral is a unique group of registers or their fields that have a common purpose. Here is an example of how to define and use it:

use core::mem::size_of_val;
use drone_core::periph;

periph::singular! {
    /// Extracts RTC register tokens.
    pub macro periph_rtc;
    /// Real-Time Clock peripheral.
    pub struct RtcPeriph;

    // Path prefix to reach registers.
    crate;
    // Absolute path to the current module.
    crate;

    // In the register block RCC...
    RCC {
        // In the register APB1ENR1...
        APB1ENR1 {
            // Map the single field RTCAPBEN. Other fields in this register
            // could be used by other peripherals.
            RTCAPBEN;
        }
    }
    // In the register block RTC...
    RTC {
        // Map the whole registers TR, DR, and CR.
        TR;
        DR;
        CR;
    }
}

// This will expand to the struct and the macro below:

/// Real-Time Clock.
pub struct RtcPeriph {
    pub rcc_apb1enr1_rtcapben: rcc::apb1enr1::Rtcapben<Srt>,
    pub rtc_tr: rtc::Tr<Srt>,
    pub rtc_dr: rtc::Dr<Srt>,
    pub rtc_cr: rtc::Cr<Srt>,
}

/// Extracts RTC register tokens.
macro_rules! periph_rtc {
    ($reg:ident) => {
        RtcPeriph {
            rcc_apb1enr1_rtcapben: $reg.rcc_apb1enr1.rtcapben,
            rtc_tr: $reg.rtc_tr,
            rtc_dr: $reg.rtc_dr,
            rtc_cr: $reg.rtc_cr,
        }
    };
}

// Here is how to use it in your `trunk` thread:

fn trunk(reg: Regs) {
    let rtc = periph_rtc!(reg);
    assert_eq!(size_of_val(&rtc), 0);
}

Generic Peripheral

Often there are multiple peripherals of a single type. For example in STM32L4S9 microcontroller there are USART1, USART2, USART3, UART4, UART5, and LPUART1. Most of their registers are the same, but also there are some differences. USART1, USART2, USART3 support synchronous transmission, and LPUART1 can function in low-power modes. However their drivers would have many functions in common. For this reason we map those peripheral registers together in a generic structure, and also map their differences. Here is an example:

use drone_core::{periph, reg::marker::*};

// Here we define the generic UART peripheral.
periph! {
    /// Generic Universal Asynchronous Receiver/Transmitter peripheral variant.
    pub trait UartMap {
        // Concrete UART peripherals will implement this trait. Arbitrary code
        // can be placed here.
    }
    // This will be the peripheral struct with public fields corresponding to
    // registers and/or register fields. The signature is
    // `struct UartPeriph<T: UartMap>`.
    /// Generic Universal Asynchronous Receiver/Transmitter peripheral.
    pub struct UartPeriph;

    // With RCC namespace...
    RCC {
        APBENR {
            // We need to declare the size of the register and its properties.
            // `RwReg` is a marker trait from `drone_core::reg::marker`, and it
            // means this is a read-write register. `Shared` is a special
            // property, which means the peripheral will not own the whole
            // register, but will own only a part of its fields.
            0x20 RwReg Shared;
            // All peripherals will have UARTEN field. Again, `RwRwRegFieldBit`
            // is a marker trait from `drone_core::reg::marker`, and it means
            // this is a read-write single-bit field.
            UARTEN { RwRwRegFieldBit }
            // This is an optional field. Not all concrete peripherals will have
            // it.
            UARTRST { RwRwRegFieldBit Option }
        }
    }
    // Actually there is no UART register block. There are USART1, USART2,
    // USART3 and so on. This namespace is virtual; concrete peripherals
    // will map actual blocks to this namespace.
    UART {
        CR1 {
            0x20 RwReg;
            CMIE { RwRwRegFieldBit }
            EOBIE { RwRwRegFieldBit Option }
        }
        RTOR {
            // This is an optional register.
            0x20 RwReg Option;
            BLEN { RwRwRegFieldBits }
            // And this is an optional field of the optional register.
            RTO { RwRwRegFieldBits Option }
        }
    }
}

// Here we define the concrete UART4 peripheral.
periph::map! {
    // Extracts UART4 register tokens.
    pub macro periph_uart4;
    // UART4 peripheral variant.
    pub struct Uart4;

    impl UartMap for Uart4 {
        // If `UartMap` defined some items, they should be implemented here.
    }

    // Path prefix to reach registers.
    crate;
    // Absolute path to the current module.
    crate;

    RCC {
        APBENR {
            // Here we provide the real name of the register - APB1ENR1. And
            // also the special properties like `Shared` or `Option`.
            APB1ENR1 Shared;
            // Again, we provide the real name of the field.
            UARTEN { UART4EN }
            // If the name is the same, we should provide it. Also if an
            // optional field present, we should mark it with `Option`.
            UARTRST { UARTRST Option }
        }
    }
    UART {
        // The real name of the block of registers.
        UART4;
        CR1 {
            CR1;
            CMIE { CMIE }
            // If the optional field absent, we should mention it like this.
            EOBIE {}
        }
        RTOR {
            RTOR Option;
            BLEN { BLEN }
            RTO {}
        }
    }
}

// Here is how we define a function generic over all variants of the peripheral.
// Optional fields will not be available even if the concrete peripheral has them.
fn basic_fields<T: UartMap>(uart: UartPeriph<T>) {}

// Here is a generic function over peripherals that have all optional fields.
fn opt_fields<T>(uart: UartPeriph<T>)
where
    T: UartMap + RccApbenrUartrst + UartCr1Eobie + UartRtorRto,
{
}

Macros

map

Implements the generic peripheral.

singular

Defines a singular peripheral.