1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//! A single-producer, single-consumer queue for sending values across
//! asynchronous tasks.
//!
//! See [`channel`](ring::channel) constructor for more.

mod receiver;
mod sender;

pub use self::{
    receiver::Receiver,
    sender::{SendError, SendErrorKind, Sender},
};

use crate::sync::spsc::{SpscInner, SpscInnerErr};
use alloc::{raw_vec::RawVec, sync::Arc};
use core::{
    cell::UnsafeCell,
    cmp,
    mem::{size_of, MaybeUninit},
    ptr, slice,
    sync::atomic::{AtomicUsize, Ordering},
    task::Waker,
};

/// Maximum capacity of the channel.
pub const MAX_CAPACITY: usize = (1 << NUMBER_BITS) - 1;

const NUMBER_MASK: usize = (1 << NUMBER_BITS) - 1;
const NUMBER_BITS: u32 = (size_of::<usize>() as u32 * 8 - OPTION_BITS) / 2;

const _RESERVED: usize = 1 << size_of::<usize>() * 8 - 1;
const COMPLETE: usize = 1 << size_of::<usize>() * 8 - 2;
const RX_WAKER_STORED: usize = 1 << size_of::<usize>() * 8 - 3;
const TX_WAKER_STORED: usize = 1 << size_of::<usize>() * 8 - 4;
const OPTION_BITS: u32 = 4;

// Layout of the state field:
//     OOOO_CCCC_LLLL
// Where O are option bits, C are cursor bits, and L are lenght bits.
//
// Cursor range: [0; MAX_CAPACITY - 1]
// Length range: [0; MAX_CAPACITY]
struct Inner<T, E> {
    state: AtomicUsize,
    buffer: RawVec<T>,
    err: UnsafeCell<Option<E>>,
    rx_waker: UnsafeCell<MaybeUninit<Waker>>,
    tx_waker: UnsafeCell<MaybeUninit<Waker>>,
}

/// Creates a new channel, returning the sender/receiver halves.
///
/// `capacity` is the capacity of the underlying ring buffer.
///
/// The [`Sender`] half is used to write values to the ring buffer. The
/// [`Receiver`] half is a [`Stream`](futures::stream::Stream) that reads the
/// values from the ring buffer.
#[inline]
pub fn channel<T, E>(capacity: usize) -> (Sender<T, E>, Receiver<T, E>) {
    let inner = Arc::new(Inner::new(capacity));
    let sender = Sender::new(Arc::clone(&inner));
    let receiver = Receiver::new(inner);
    (sender, receiver)
}

unsafe impl<T: Send, E: Send> Send for Inner<T, E> {}
unsafe impl<T: Send, E: Send> Sync for Inner<T, E> {}

impl<T, E> Inner<T, E> {
    #[inline]
    fn new(capacity: usize) -> Self {
        assert!(capacity <= MAX_CAPACITY);
        Self {
            state: AtomicUsize::new(0),
            buffer: RawVec::with_capacity(capacity),
            err: UnsafeCell::new(None),
            rx_waker: UnsafeCell::new(MaybeUninit::zeroed()),
            tx_waker: UnsafeCell::new(MaybeUninit::zeroed()),
        }
    }
}

impl<T, E> Drop for Inner<T, E> {
    fn drop(&mut self) {
        let state = self.state_load(Ordering::Acquire);
        let length = state & NUMBER_MASK;
        let cursor = state >> NUMBER_BITS & NUMBER_MASK;
        let end = cursor
            .wrapping_add(length)
            .wrapping_rem(self.buffer.capacity());
        match cursor.cmp(&end) {
            cmp::Ordering::Equal => unsafe {
                ptr::drop_in_place(slice::from_raw_parts_mut(
                    self.buffer.ptr(),
                    self.buffer.capacity(),
                ));
            },
            cmp::Ordering::Less => unsafe {
                ptr::drop_in_place(slice::from_raw_parts_mut(
                    self.buffer.ptr().add(cursor),
                    end - cursor,
                ));
            },
            cmp::Ordering::Greater => unsafe {
                ptr::drop_in_place(slice::from_raw_parts_mut(self.buffer.ptr(), end));
                ptr::drop_in_place(slice::from_raw_parts_mut(
                    self.buffer.ptr().add(cursor),
                    self.buffer.capacity() - cursor,
                ));
            },
        }
    }
}

impl<T, E> SpscInner<AtomicUsize, usize> for Inner<T, E> {
    const ZERO: usize = 0;
    const RX_WAKER_STORED: usize = RX_WAKER_STORED;
    const TX_WAKER_STORED: usize = TX_WAKER_STORED;
    const COMPLETE: usize = COMPLETE;

    #[inline]
    fn state_load(&self, order: Ordering) -> usize {
        self.state.load(order)
    }

    #[inline]
    fn compare_exchange_weak(
        &self,
        current: usize,
        new: usize,
        success: Ordering,
        failure: Ordering,
    ) -> Result<usize, usize> {
        self.state
            .compare_exchange_weak(current, new, success, failure)
    }

    #[inline]
    unsafe fn rx_waker_mut(&self) -> &mut MaybeUninit<Waker> {
        &mut *self.rx_waker.get()
    }

    #[inline]
    unsafe fn tx_waker_mut(&self) -> &mut MaybeUninit<Waker> {
        &mut *self.tx_waker.get()
    }
}

impl<T, E> SpscInnerErr<AtomicUsize, usize> for Inner<T, E> {
    type Error = E;

    unsafe fn err_mut(&self) -> &mut Option<Self::Error> {
        &mut *self.err.get()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::{
        pin::Pin,
        sync::atomic::AtomicUsize,
        task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
    };
    use futures::stream::Stream;

    struct Counter(AtomicUsize);

    impl Counter {
        fn to_waker(&'static self) -> Waker {
            unsafe fn clone(counter: *const ()) -> RawWaker {
                RawWaker::new(counter, &VTABLE)
            }
            unsafe fn wake(counter: *const ()) {
                (*(counter as *const Counter))
                    .0
                    .fetch_add(1, Ordering::SeqCst);
            }
            static VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake, drop);
            unsafe { Waker::from_raw(RawWaker::new(self as *const _ as *const (), &VTABLE)) }
        }
    }

    #[test]
    fn send_sync() {
        static COUNTER: Counter = Counter(AtomicUsize::new(0));
        let (mut tx, mut rx) = channel::<usize, ()>(10);
        assert_eq!(tx.send(314).unwrap(), ());
        drop(tx);
        let waker = COUNTER.to_waker();
        let mut cx = Context::from_waker(&waker);
        COUNTER.0.store(0, Ordering::SeqCst);
        assert_eq!(
            Pin::new(&mut rx).poll_next(&mut cx),
            Poll::Ready(Some(Ok(314)))
        );
        assert_eq!(Pin::new(&mut rx).poll_next(&mut cx), Poll::Ready(None));
        assert_eq!(COUNTER.0.load(Ordering::SeqCst), 0);
    }

    #[test]
    fn send_async() {
        static COUNTER: Counter = Counter(AtomicUsize::new(0));
        let (mut tx, mut rx) = channel::<usize, ()>(10);
        let waker = COUNTER.to_waker();
        let mut cx = Context::from_waker(&waker);
        COUNTER.0.store(0, Ordering::SeqCst);
        assert_eq!(Pin::new(&mut rx).poll_next(&mut cx), Poll::Pending);
        assert_eq!(tx.send(314).unwrap(), ());
        assert_eq!(
            Pin::new(&mut rx).poll_next(&mut cx),
            Poll::Ready(Some(Ok(314)))
        );
        assert_eq!(Pin::new(&mut rx).poll_next(&mut cx), Poll::Pending);
        drop(tx);
        assert_eq!(Pin::new(&mut rx).poll_next(&mut cx), Poll::Ready(None));
        assert_eq!(COUNTER.0.load(Ordering::SeqCst), 2);
    }
}